首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3065篇
  免费   533篇
  国内免费   728篇
测绘学   23篇
大气科学   106篇
地球物理   566篇
地质学   629篇
海洋学   2434篇
天文学   1篇
综合类   222篇
自然地理   345篇
  2024年   12篇
  2023年   40篇
  2022年   129篇
  2021年   123篇
  2020年   144篇
  2019年   118篇
  2018年   124篇
  2017年   120篇
  2016年   152篇
  2015年   132篇
  2014年   190篇
  2013年   190篇
  2012年   162篇
  2011年   213篇
  2010年   190篇
  2009年   222篇
  2008年   246篇
  2007年   244篇
  2006年   209篇
  2005年   166篇
  2004年   155篇
  2003年   137篇
  2002年   135篇
  2001年   101篇
  2000年   101篇
  1999年   92篇
  1998年   79篇
  1997年   52篇
  1996年   55篇
  1995年   37篇
  1994年   43篇
  1993年   54篇
  1992年   50篇
  1991年   21篇
  1990年   13篇
  1989年   4篇
  1988年   4篇
  1987年   7篇
  1986年   4篇
  1985年   18篇
  1984年   12篇
  1983年   12篇
  1982年   7篇
  1981年   5篇
  1979年   1篇
  1978年   1篇
排序方式: 共有4326条查询结果,搜索用时 218 毫秒
81.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
82.
基于1982年4~6月海流观测资料,本文分析了芝罘湾流场的基本特征。结果表明,流场以潮流为主。整个海湾,湾口流速最大,湾底流速较小。除湾中央区外,潮流基本属于往复流型。与潮流相比,余流较小,量值大多为7cm/s左右。  相似文献   
83.
During three cruises in the Black Sea, organised in July 1995 and April–May 1997, biological and chemical parameters that can influence the carbon budget were measured in the water column on the NW shelf, particularly in the mixing zone with Danube River waters. We observed in early spring (end of April–May) conditions an important input of freshwater organisms that enhanced the microbial activity in the low salinity range. High bacterial activity regenerates nitrogen in the form of nitrates, but is also responsible for an important consumption of ammonium and phosphate, leading to a high N/P ratio and a strong deficit in phosphorus. The consequence is a limitation of phytoplankton development but also a production of carbohydrates that accumulate all along the salinity gradient. These mechanisms are responsible for a seasonal accumulation of dissolved organic carbon (DOC) that increases from 210 μM in winter to about 280 μM in summer. All this excess DOC disappears during winter, probably degraded by bacterial activity. The degradation of carbon-rich organic matter increases the phosphorus demand by bacteria bringing limitation to phytoplankton primary production.  相似文献   
84.
85.
Winter-spring phytoplankton blooms in Dabob Bay, Washington   总被引:4,自引:2,他引:4  
Scientific investigations in Dabob Bay, Washington State, USA, have been extensive since the early 1960s, but phytoplankton blooms have been studied mostly with regard to chlorophyll concentrations and little is known about the phytoplankton species themselves. Here we provide information on the species present, their abundances during blooms, their contribution to organic carbon concentrations and the ability of some phytoplankton species to produce toxic aldehydes that may impact metazoan grazers.Multiple blooms of phytoplankton, dominated by diatoms, occurred in the late winter-early spring period, with depth-integrated chlorophyll levels ranging from <20 to 230 mg m−2 and peaks in February and April. The major bloom species included Skeletonema costatum, Thalassiosira spp. and Chaetoceros spp; Phaeocystis cf. pouchetii occurred in 2002 and 2004. Other taxa or groups of organisms that were sometimes abundant included unidentified small flagellates <10 μm in size and unidentified heterotrophic dinoflagellates. Large diatoms usually comprised most of the cell carbon, but a large, heterotrophic dinoflagellate, identified only as Gyrodinium “tear” because of its shape, was a major contributor to the microplankton carbon when present even in small numbers. Five Thalassiosira species and S. costatum were found to produce polyunsaturated aldehydes (PUA) that are known to affect copepod reproduction and hatching success. Our findings are similar to the few previous studies in the last four decades that included phytoplankton species and suggest long-term similarities and relative stability in the phytoplankton species present and their timing in Dabob Bay.  相似文献   
86.
根据湄州湾表层沉积物70个样品18个化学成分的分析结果,得出:本海区沉积物属于海相陆源物,其中细颗粒主要来自台湾海峡,粗颗粒来自当地陆域;化学成分含量按聚类分析,可归为三组:粘土矿物组、碳酸盐组和分散组,微量元素Zn,Cr,Be,Cu和Sr的含量与地壳及台湾海峡相似,但低于胶州湾,说明该海区污染很少。  相似文献   
87.
88.
The speciation of dissolved iodine and the distributions of the iodine species in the deep Chesapeake Bay underwent seasonal variations in response to changes in the prevailing redox condition. In the deep water, the ratios of iodate to iodide and iodate to inorganic iodine decreased progressively from the Winter through the Summer as the deep water became more poorly oxygenated before they rebounded in the Fall when the deep water became re-oxygenated again. The composition of the surface water followed the same trend. However, in this case, the higher biological activities in the Spring and the Summer could also have enhanced the biologically mediated reduction of iodate to iodide by phytoplankton and contributed to the lower ratios found during those seasons. Superimposed on this redox cycle was a cycle of input and removal of dissolved iodine probably as a result of the interactions between the water column and the underlying sediments. Iodine was added to the Bay during the Summer when the deep water was more reducing and removed from the Bay in the Fall when the deep water became re-oxygenated. A third cycle was the inter-conversion between inorganic iodine and ‘dissolved organic iodine’, or ‘‘DOI’’. The conversion of inorganic iodine to ‘DOI’ was more prevalent in the Spring. As a result of these biogeochemical reactions in the Bay, during exchanges between the Bay and the North Atlantic, iodate-rich and ‘DOI’-poor water was imported into the Bay while iodide- and ‘DOI’-rich water was exported to the Atlantic. The export of iodide from these geochemically reactive systems along the land margins contributes to the enrichment of iodide in the surface open oceans.  相似文献   
89.
IwrincrIONOn the evolution of palcoenvironment, salt-water encroachmnt and the distributionof subsurface brine in the LaizhOu Bay area, many researches had been carried out, and muchknowledge abeut the gcolOgical features in this area since Late QUaternary was aCquired' ) (H8nand Wu, l992; Han and Meng, l994; Wen et al. l989). However there was IittIe studyon the sediment geOChemical characteristics since Quaternary. In this Paper, the element strati-graphic characteristics and evolut…  相似文献   
90.
The physico-chemical speciation of organic carbon and selected metals was measured during a coastal bloom in Ekhagen Bay, Baltic Sea, using ultrafiltration.One important objective with the study was to see if any depletion of trace metals could be measured in the directly bioavailable fraction (<1000 Da, the soluble low molecular weight fraction, LMW) during a plankton bloom. Filters with five different cut-offs were used (1 kD (1000 Da), 5 kD, 10 kD, 100 kD and 0.22 μm) in order to delineate the size distribution of colloidal organic carbon (COC) and trace metals.During the bloom in May, LMW Al, Co, Cu, Mn and Ni concentrations decreased although the colloidal and particulate concentrations were relatively high. Data show that desorption of colloidal and particulate bound trace metals to the LMW fraction was slower than the process depleting the LMW fraction.Estimates of the maximum active uptake of Cu, Ni and Mn by the phytoplankton, and the loss of non-bioactive Al from the LMW fraction, indicate that processes other than active uptake by phytoplankton must contribute to the observed depletion of trace metals in the LMW fraction. Hence, in order to estimate the bioavailable pool of trace metals for plankton during bloom conditions, these other processes must be understood and quantified.Transparent Exopolymeric Particles (TEP, reflecting sugar-rich phytoplankton exudates) increased around eight times during the plankton bloom. We hypothesize that the formation of TEP is a process that might be important for the transfer of trace metals from the LMW to the particulate fraction during the phytoplankton bloom, but the significance of TEP for this depletion in Baltic Sea surface water remains to be shown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号